91 research outputs found

    Low level microwave exposure decreases the number of male germ cells and affect vital organs of Sprague Dawley rats

    Get PDF
    The effects of 2.45 GHz microwave (MW) radiation on the vital tissues of Sprague Dawley rats were investigated. The various tissues assessed through histopathological assay were liver, kidney, heart, testis, ovary, fallopian tube, prostate, seminal vesicle and epididymis. The animals were exposed to various level of Specific Absorption Rate (SAR) which were 0 (control), 0.48, 0.95, 1.43, 1.91 and 2.39 W/kg using the microwave generator, model ER660E, Serial No MX704CCR from Toshiba UK Ltd for maximum period of ten minutes. From the results it was observed that the kidney and ovary were the most affected tissues in the female animals exposed to 2.45 GHz MW radiation when compared to the control. Hyperchromasia was observed in the ovary of the animals exposed to MW radiation. Vascular/glomerular congestion, interstitial spaces hemorrhage and tubular cells cloudiness was observed in the kidney. In the male animals, the testis and liver were the most affected organs when compared with control. There was reduction in the number of germ cells and cell disorganization observed from the testis of exposed group. The degree of reduction in the number of the germ cells varies with SARs, highest reduction was observed in the group V exposed to 2.39 W/kg which suggest that MW radiation has the potential to affects male fertility adversely. Oodema, cloudiness, glomeruli congestion was observed in the liver. There is no significant proof that the microwave radiation at this study frequency produces pathologic effects on the tissue studied except for the decrease in the number of germ cells and modification of some organs

    Inter-filament Attractions Narrow the Length Distribution of Actin Filaments

    Full text link
    We show that the exponential length distribution that is typical of actin filaments under physiological conditions dramatically narrows in the presence of (i) crosslinker proteins (ii) polyvalent counterions or (iii) depletion mediated attractions. A simple theoretical model shows that in equilibrium, short-range attractions enhance the tendency of filaments to align parallel to each other, eventually leading to an increase in the average filament length and a decrease in the relative width of the distribution of filament lengths.Comment: 5 pages, 4 figure

    Spontaneous Expulsion of Giant Lipid Vesicles Induced by Laser Tweezers

    Get PDF
    Irradiation of a giant unilamellar lipid bilayer vesicle with a focused laser spot leads to a tense pressurized state which persists indefinitely after laser shutoff. If the vesicle contains another object it can then be gently and continuously expelled from the tense outer vesicle. Remarkably, the inner object can be almost as large as the parent vesicle; its volume is replaced during the exit process. We offer a qualitative theoretical model to explain these and related phenomena. The main hypothesis is that the laser trap pulls in lipid and ejects it in the form of submicron objects, whose osmotic activity then drives the expulsion.Comment: Plain TeX file; uses harvmac and epsf; .ps available at http://dept.physics.upenn.edu/~nelson/expulsion.p

    Leaders of neuronal cultures in a quorum percolation model

    Get PDF
    We present a theoretical framework using quorum-percolation for describing the initiation of activity in a neural culture. The cultures are modeled as random graphs, whose nodes are excitatory neurons with kin inputs and kout outputs, and whose input degrees kin = k obey given distribution functions pk. We examine the firing activity of the population of neurons according to their input degree (k) classes and calculate for each class its firing probability \Phi_k(t) as a function of t. The probability of a node to fire is found to be determined by its in-degree k, and the first-to-fire neurons are those that have a high k. A small minority of high-k classes may be called "Leaders", as they form an inter-connected subnetwork that consistently fires much before the rest of the culture. Once initiated, the activity spreads from the Leaders to the less connected majority of the culture. We then use the distribution of in-degree of the Leaders to study the growth rate of the number of neurons active in a burst, which was experimentally measured to be initially exponential. We find that this kind of growth rate is best described by a population that has an in-degree distribution that is a Gaussian centered around k = 75 with width {\sigma} = 31 for the majority of the neurons, but also has a power law tail with exponent -2 for ten percent of the population. Neurons in the tail may have as many as k = 4, 700 inputs. We explore and discuss the correspondence between the degree distribution and a dynamic neuronal threshold, showing that from the functional point of view, structure and elementary dynamics are interchangeable. We discuss possible geometric origins of this distribution, and comment on the importance of size, or of having a large number of neurons, in the culture.Comment: Keywords: Neuronal cultures, Graph theory, Activation dynamics, Percolation, Statistical mechanics of networks, Leaders of activity, Quorum. http://www.weizmann.ac.il/complex/tlusty/papers/FrontCompNeuro2010.pd

    Transmission of trisomy decreases with maternal age in mouse models of Down syndrome, mirroring a phenomenon in human Down syndrome mothers

    Get PDF
    Genotyping Tc1. An example picture of a gel used during genotyping. Two lines refer to a Tc1 positive trisomic pup. One line refers to a disomic pup. (EPS 1781 kb
    corecore